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Research Question

How well can social connections be used to study the spread of
infectious diseases?

KNOWN: network data on human social interactions are more informative than

geographic proximity
UNCLEAR: which type of social interactions matters more for early stage spread

and later-on local transmission
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Setting: the Spread of COVID-19 in China in Early 2020

Jan 23rd-March 23rd for all Chinese cities

Combine social media network and travel network to measure social connections
Three steps

1. When did the first COVID-19 case show up?
2. How wide spread was the subsequent local transmission?

3. How does the interplay of travel and information driven by social connections matter
for local transmission?
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Data and Measurements

Social Connections (cross-sectional)
Social Media Connection: 2013 snapshot of Weibo network created by Qin et al. (2021)

Baidu Travel Connection: aggregated average value at city-to-city level from Baidu Migration during
Jan 1st-Jan 23rd 2020
Cellphone Travel from Wuhan:estimated population movement from Wuhan during Jan 1st-Jan 23rd
2020

Infection and social distancing (city daily panel)
Daily infections outside Wuhan (from DXY)
Social Distance index computed using Baidu Within-City Traffic Index

» distribution of connection to wuhan by network » PCA decomposition of connections

4/8



Predicting the Arrival Time

* Social media connections to Wuhan outperforms travel connections in predicting the arrival (higher R2)
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It also implies stronger transmission of COVID-19 (1.6 ~ 2 days faster per SD) (bigger slope)
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Predicting the Accumulated Number of Infections

» Travel connection to Wuhan is a better predictor than social media connections (higher R2)
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Figure: R-squared of prediction on number of infection using random forest

regression
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The Dual Effects of Infection Import Exposure (1/4)

To decompose by interacting the connection measures with travel restrictions

TravelExposuren, Z an — Lockdowny, (1 )Infectionsy, ;|
m#n
CommunicationExposurek = Z K Infections,
nt * Pum myt—1
m#n

Ayc; = anfections,; 1 + ykTravelExposurelfw_l + GkCommunicationExposureﬁ_’t_1 + X P+FEs+ €y

GkCommunicationExposure’flt71: effect under lock-down (no travel outflow from export cities)
)/‘TravelExposure’;t_l: additional effect when there is no travel restrictions GESShEE

Results

Travel speeds up spread while communication slows down spread

» effects on infection » effects on social distancing
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Conclusion and Take away

To conclude

Construct a Social Media Connection index between Chinese cities using Weibo

data
Nott only a measure of social contact proximity but also a conduit of information

outperform travel connections in predicting when and where
can both speed up (travel) and slow down (communication) the spread

Take Away

Quick identification of high-risk regions upon initial outbreak
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Appendix



PCA Decomposition
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(b) K-means clustering on PCA components
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Distribution of Connections to Wuhan by Network
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(d) outflow travel index
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Predicting the Arrival Time

VARIABLES (1) 2) 3) (4) (5)
SocialMediaConnection*"" -2.60397*" -2.1878***  -2.0373***
(0.187) (0.238) (0.265)
BaiduTravelConnection™"" -1.2324** -0.0738 -0.2329
(0.234) (0.257) (0.284)
CellphoneTravelConnection**he" -2.0960"*  -0.6656™* -0.3316
(0.219) (0.321) (0.414)
Observations 244 243 244 243 243
R-squared 0.446 0.103 0.275 0.468 0.473
Mean 11.209 11.210 11.209 11.210 11.210
Control NO NO NO NO YES
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Two Examples on Infection Import Exposure

(a) CommunicationExposure, Guangzhou
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(b) CommunicationExposure, Yongzhou
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The Dual Effects of Infection Import Exposure on Newly Infections

(1) 2) (3) (4) (5) (6)
VARIABLES early early early later later later
CommunicationExposure™®  -1.4404*** -1.4032***  -0.2937*** -0.2479***
(0.447) (0.470) (0.062) (0.053)
Travel Exposure"? 1.3883"** 1.2727***  0.3376™** 0.2914***
(0.366) (0.375) (0.088) (0.085)
CommunicationExposure®@d" -0.7115***  -0.5829*** -0.2593***  -0.2261"*"
(0.170) (0.127) (0.050) (0.045)
Travel Exposure?@dt 0.5336"**  0.4284*** 0.2892***  0.2281***
(0.130) (0.120) (0.073) (0.067)
Observations 6,224 6,224 6,224 8,475 8,475 8,475
R-squared 0.340 0.299 0.351 0.195 0.194 0.205
Mean -0.029 -0.029 -0.029 -0.099 -0.099 -0.099
Controls X X X X X X
dateFE X X X X X X
SEcluster City+date City+date City+date City+date City+date City+date

6/7



The Dual Effects of Infection Import Exposure on Social Distancing

(1) 2) ) 4) (5) (6)
VARIABLES early early early later later later
CommunicationExposure"®®  0.0897*** 0.0900*** 0.0095 0.0307
(0.030) (0.030) (0.030) (0.028)
Travel Exposure¢ib® 0.1129*** 0.1157*** 0.0055 -0.0137
(0.030) (0.031) (0.028) (0.028)
CommunicationExposure®®du -0.0267 -0.0360 -0.0872**  -0.0925**
(0.035) (0.033) (0.038) (0.038)
Travel Exposure@dt -0.0310 -0.0334 0.0852***  0.0932***
(0.033) (0.030) (0.030) (0.032)
Observations 5,669 5,669 5,669 7,633 7,633 7,633
R-squared 0.887 0.882 0.888 0.912 0.913 0.913
Mean 0.006 0.006 0.006 0.002 0.002 0.002
Controls X X X X X X
CityFE X X X X X X
dateFE X X X X X X
SEcluster City+date  City+date City+date City+date City+date  City+date
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