The Innovation Cost of Short Political Horizons

Evidence from Local Leaders' Promotion in China

Xueping Sun

IIES, Stockholm University

Aug 24, 2022

EEA-ESEM MILANO 2022

Research Question

Does the political horizon of a local leader matter for policy choice?

- Government can affect economic growth with policies in the short and long run
 - Financing science and other policies in support of Innovation translate into growth with a delay, while infrastructure projects may boost short-term growth
 - Politicians who chose policies take into account their expected horizons
- Hypothesis: politicians who expect fast promotion may underinvest in innovation

Setting: Chinese City Leaders and Innovation Policies

- Can impact innovation through fiscal/financial/administrative tools Policy framework
- Uncertain tenure
 - Make career progression if/when moved up in the hierarchy
 - Both economic performance and political connections matters for promotion

What's the effect of tenure expectation on innovation policies?

Roadmap of Talk

Empirical Design

Data and Measurements

Results and Discussions

Conclusion

• Endogeneity problem:policies affect the length of tenure

- Endogeneity problem:policies affect the length of tenure
- Use the fact that connected leaders tend to be on fast track

- Endogeneity problem:policies affect the length of tenure
- Use the fact that connected leaders tend to be on fast track
- Source of variation: pre-determined network x turnover of provincial leaders

- Endogeneity problem:policies affect the length of tenure
- Use the fact that connected leaders tend to be on fast track
- Source of variation: pre-determined network × turnover of provincial leaders

- Endogeneity problem:policies affect the length of tenure
- Use the fact that connected leaders tend to be on fast track
- Source of variation: pre-determined network × turnover of provincial leaders

- Endogeneity problem:policies affect the length of tenure
- Use the fact that connected leaders tend to be on fast track
- Source of variation: pre-determined network × turnover of provincial leaders

- Endogeneity problem:policies affect the length of tenure
- Use the fact that connected leaders tend to be on fast track
- Source of variation: pre-determined network × turnover of provincial leaders

- Endogeneity problem:policies affect the length of tenure
- Use the fact that connected leaders tend to be on fast track
- Source of variation: pre-determined network x turnover of provincial leaders

- Endogeneity problem:policies affect the length of tenure
- Use the fact that connected leaders tend to be on fast track
- Source of variation: pre-determined network x turnover of provincial leaders

Isolate selection from treatment by controlling for the timing of switching connection

Data

Measurements: Political Connections and Policy Posture

Subordinate-superior Ties in CV:s Network as Connection

- L is connected to H if L used to work as a direct subordinate appointed by H
 - **direct subordinate**: H's position supervised L's position directly
 - appointed: H arrived before L
 - ▶ formula → alternative functional form of valuing work connection → other form of connections

Policy Measures Using Government Work Report

$$Posture of policy = \frac{length \ of \ sentences \ on \ policy}{length \ of \ document}$$

correlation between policy posture and real outcomes

Finding 1/3: Connected Leaders Have Shorter Expected Tenure

Exiting rate by term year, NC v.s. NN among T>1&switch at 1

Exiting rate by term year, CC v.s. CN among T>1&switch at 1

Remaining years at spell level

specification for dynamic exiting

other connections

Findings 2/3: Fast-over-slow Policy Pursuit

↑infrastructure,↓ sci&tech spending and priority of innovation

Findings 3/3: Short-run Growth at the Cost of Future Innovation

Event study results: GDP growth rate v.s. log(# patents)

Dynamic effect from t till t+10 (IRF)

Interpretation and Discussions

Connected ---- Shorter horizon ---- Fast-over-slow policy ---- Less innovation

Exclusion restriction

- No Difference in resource transfer Fiscal resource
- Unlikely to be driven by promotion Placebo test

Alternative mechanisms

Rent-seeking or risk-seeking through infrastructure developments?

How policy impacts innovation?

Both direct effect and indirect effects at play

 Meterogeneous effects: edu v.s. firm

Conclusion and Implication

To conclude

- With a novel exogenous variation in political connection as identifying variation
- Show that connected leaders have shorter expected tenure and invest in short-run growth-enhancing policies at the cost of longer-term innovation

Implications for China's economic transition

- Bureaucratic incentives may erect an institutional barrier for the transition from "made-in-China" towards "innovated-in- China"
- Substituting innovation with infrastructure lowers future growth when China is approaching the technology frontier

Appendix

Local Government's Policies on Innovation

National Government Guide...

- Five-year plans
- National Mid-to-long-term Plan for Science and Technology (2006-2020)

Local Governments Implement... with Discretion

- Direct financing through budget spending and off-budget spending
- Indirect financing through tax refund, credit and public procurement
- Platforms/organzations to facilitate innovation

▶ the example of Dongguan

The Example of Dongguan • back

The Program of Technology Dongguan (2005-2010)

- 5 Billion RMB (1.8%) from city government's budget
- to subsize firm's technology upgrade

Dongguan Songshan Lake Science Park

Indirect financial support+platform

2000: farmland

2002: first highway

2020: >1500 tech-firms

CV Example • back

Text Classification • Lack

Correlation between Text Measurement and Real Outcomes Correlation

Summary Statistics of Outcome Variables • Dack

	Statistic					Share of Variation	
Variables	Count	Mean	Std	5th Percentile	95th Percentile	Within	Between
Innovation Outcome							
# of Patents	6015	989.80	3664.48	4.00	4453.00	0.56	0.44
Firm	6015	589.58	2664.50	0.00	2415.00	0.54	0.46
University	6015	154.14	701.09	0.00	719.00	0.54	0.46
GDP Growth Rate(%)	5171	13.09	8.85	0.60	26.55	0.94	0.06
Policy Outcome							
Budget Spending (millio	on yuan)						
Infrastructure	2575	1097.01	2320.50	50.49	4541.80	0.39	0.61
Sci &Tech	3658	533.27	1751.03	11.98	2064.90	0.47	0.53
Innovation Posture(%)	3824	12.28	6.49	3.62	24.61	0.74	0.26

Summary Statistics of Leader Features • back

	Statistic					Share of Variation	
Variables	Count	Mean	Std	5th Percentile	95th Percentile	Within	Between
Leader Features (city-	/ear panel)						
Connectedstart	6209	0.80	0.40	0.00	1.00	0.78	0.22
Connected ^{start psecretary}	6090	0.62	0.49	0.00	1.00	0.76	0.24
Connected ^{start mayor}	5935	0.57	0.50	0.00	1.00	0.75	0.25
Connected	6211	0.68	0.47	0.00	1.00	0.81	0.19
Connected ^{psecretary}	6086	0.47	0.50	0.00	1.00	0.82	0.18
Connected ^{mayor}	5959	0.50	0.50	0.00	1.00	0.80	0.20
STEM ^{psecretary}	6269	0.37	0.48	0.00	1.00	0.77	0.23
STEM ^{mayor}	6269	0.35	0.48	0.00	1.00	0.77	0.23
FastTrack ^{psecretary}	6229	0.32	0.47	0.00	1.00	0.79	0.21
FastTrack ^{mayor}	6133	0.29	0.46	0.00	1.00	0.79	0.21
Age ^{psecretary}	6086	52.20	3.79	45.00	58.00	0.77	0.23
Age^{mayor}	5986	50.31	4.01	43.00	56.00	0.75	0.25
Turonver Outcome (fir	nished city-	leader spell)					
TermLen ^{psecretary}	1935	3.69	1.77	1.08	6.92	0.81	0.19
TermLen ^{mayor}	2078	3.42	1.66	1.08	6.25	0.74	0.26
Promoted ^{psecretary}	1953	0.39	0.49	0.00	1.00	0.76	0.24
Promoted ^{mayor}	1978	0.33	0.47	0.00	1.00	0.82	0.18

Subordinate-superior Ties in CV:s Network as Connection •••••

set of years when i-i work as subordinate-superior in the past

$$Connected_{i,t} = 1 \left\{ \left(\sum_{j \in sup(i,t)} || T_{i,j,t-1} || \right) > = 1 \right\}$$
current superiors

A speedy method to search through the network of leaders' career trajectories

- 1. Parse CV as a list of job events using NLP-NER method
- Define the matrix of position hierarhov H based on administration rules
- Create the matrix of assignment status Position(t) for all politicians at time t
- Find subordinate-superior ties using $Position(t) \cdot H \cdot (Position(t)')$

Alternative Function forms of Connection Intensity

Denote $\omega_{i,j,t}$ as the connection intensity between i and j at time t Monotonicity Constraints

- $\omega_{i.i.t}$ is non-decreasing in $||T_{i,j,t}||$, conditional on τ_{min} and τ_{max}
- $\omega_{i,i,t}$ is non-decreasing in τ_{max} , conditional on $||T_{i,i,t}||$ and τ_{min}
- $\omega_{i,j,t}$ is non-decreasing in τ_{min} , conditional on $||T_{i,j,t}||$ and τ_{max}

Eligible Function Forms and Histogram of $\omega(T_{i,j,t})$

Distribution and Correlation between Different Types of Connection

Identification: Within-city Shocks in Connection •••••

To isolate selection from treatment

Assumption

Conditional on selection, the timing of switching connection is exogenous to outcomes

➤ Whether cities select into having connected leaders

when do superiors change

Which Cities Receive Connected Leaders? • Dock

 $ConnEvent_{c,s} = \eta_1' X_{c,s}^0 + \eta_2' \Delta y_{c,s}^0 + CityFE + TrendFE + unobservable$

Who Starts as Connected Plack

$$ConnEvent_{i,c} = X_i\Omega + \tau_{t_{i,c}} + \delta_c + \varepsilon_{i,c}$$

When do Superiors Changes • back

Specification for Dynamic Exiting • Dark

Tenure and Promotion

whether i has stayed for S years in office

$$\pi_{i,c,t} = \underbrace{\gamma * Connected_{i,c,t}}_{\text{year}} + \underbrace{\gamma^{start}}_{\text{whether starting as connected}} + \underbrace{\gamma_s * \overrightarrow{S_{i,c,t}}}_{\text{start}} + X_{i,c,t} \Gamma + \delta_c + \tau_t + u_{i,c}$$

 $oldsymbol{\gamma}$ = the contemporaneous effect of connection on turnover outcome, holding constant selection

► Connection status over years in term

Policies, Growth and Innovation

$$y_{c,t} = \theta * Connected_{c,t} + \theta^{start} * Connected_{c,t}^{start} + \theta_s * S_{c,t} + X_{c,t}\Theta + \eta_c + \xi_t + \varepsilon_{c,t}$$

• θ = the contemporaneous effect of connection on city outcome

Main Specification: an Event Study Design for City Outcomes ••••

$$y_{c,t} = \sum_{k=1}^{k=5} \theta_{-k} 1 \{ \text{k Yrs before } SupArrival^{next} \} *Connected_{c,t}^{next}$$
 $+ \sum_{k=1}^{k=5} \theta_{k} 1 \{ \text{k Yrs after } SupArrival \} *Connected_{c,t} + Controls + FEs + u_{c,t} \}$

Connection Status over Years in Term at Spell Level • Dack

- 5.6% spells are staggered treated and 35% are never treated
- 23% are staggered untreated and 35% is always treated

Connection Status over Years at City Level Dock

Findings 2: The Pursuit of Infrastructure over Innovation

	log(Gov Sp	Policy Posture(SD	
	Infrastructure	Sci&Tech)	Innovation
Variables	(1)	(2)	(3)
Connected	0.0687*	-0.0997***	-0.0739**
	(0.041)	(0.032)	(0.037)
Connectedstart	-0.0721	0.0370	-0.0133
	(0.049)	(0.041)	(0.049)
Observations	2,391	4,262	3,311
R-squared	0.865	0.935	0.707
Mean	6.103	4.581	-0.019
City and year FE	×	X	X
Controls	×	X	X
SE Cluster	City	City	City

- ↑ 6.8% in spending on infrastucture
- ↓ 10% in spending on sci&tech
- ↓ 0.074 (SD) in policy posture

Effect of Other type of Connections on Turnovers • back

		Leave			Promoted	
Variables	(1)	(2)	(3)	(1)	(2)	(3)
ShareUni	-0.0129			0.0416*		
	(0.022)			(0.023)		
ShareHometown		0.0120			0.0393*	
		(0.018)			(0.023)	
ShareBoth			-0.0022			0.0320*
			(0.014)			(0.016)
STEM	-0.0074	-0.0075	-0.0073	0.0130	0.0127	0.0129
	(800.0)	(800.0)	(0.008)	(0.009)	(0.009)	(0.009)
$1\{Age > 50\}$	0.0411***	0.0410***	0.0410***	-0.0351***	-0.0358***	-0.0354**
	(0.008)	(0.008)	(0.008)	(0.009)	(0.009)	(800.0)
Observations	12,668	12,495	12,668	10,160	10,149	10,160
R-squared	0.268	0.245	0.268	0.096	0.094	0.096
Mean	0.087	0.087	0.087	0.087	0.087	0.087
City and year FE	X	X	X	X	X	X
Controls	X	Χ	X	X	X	X
SE Cluster	City	City	City	City	City	City

Pre-trends for IRF dynamics • back

	t-1	t-2	t-3	t-4	t-5
Variables	(1)	(2)	(3)	(4)	(5)

$y_{t-k} = \theta_k * Connected_{c,t}$
$+ heta_k^{start} * Connected_{c,t}^{start}$
$+X_{c,t-k}\Theta_k+\delta_c+ au_{t-k}+arepsilon_{c,t-k}$

Panel A: Grow F	ate in GDP				
Connected	-0.0023	-0.0075***	-0.0048	-0.0008	0.0015
	(0.003)	(0.003)	(0.003)	(0.003)	(0.004)
Connected ^{start}	0.0137***	0.0082*	-0.0009	-0.0045	-0.0017
	(0.004)	(0.004)	(0.004)	(0.004)	(0.005)
Observations	3,748	3,700	3,602	3,488	3,335
R-squared	0.547	0.539	0.521	0.468	0.429
Mean	0.133	0.138	0.143	0.152	0.159
Panel B: log(# o	f invention pate	nts application)			
Connected	-0.0054	0.0093	0.0215	0.0092	0.0185
	(0.030)	(0.029)	(0.030)	(0.029)	(0.029)
Connected ^{start}	-0.0383	-0.0056	-0.0111	0.0381	-0.0028
	(0.046)	(0.042)	(0.042)	(0.042)	(0.043)

	log(Total Fiscal Transfer)	Depdency on Debt Total Infra.Dev	Depdency on Pro.Gov Fiscal Infra.Dev	
Variables	(1)	(2)	(3)	
Connected	0.0193	0.0109	0.0075	
	(0.019)	(0.010)	(0.007)	
Connected ^{start}	-0.0421	-0.0021	0.0024	
	(0.026)	(0.013)	(0.010)	
Observations	4,826	4,453	1,394	
R-squared	0.926	0.375	0.469	
Mean	8.440	0.216	0.055	
City and year FE	X	X	X	
Controls	X	X	X	
SE Cluster	City	City	City	

Horizon v.s. Promotion Prospect ▶ back

	Turnover	Outcome	log(Gov S	pending)	Policy Posture (SD)
Variables	Exit (1)	Promoted (2)	Infrastructure (3)	Sci&Tech (4)	Innovation (5)
Connected	0.0472***	0.0115	0.2107***	-0.1480***	-0.0918
	(0.015)	(0.011)	(0.077)	(0.052)	(0.063)
Connected*Old	-0.0183	0.0397***	-0.1988**	0.0891	0.0236
	(0.020)	(0.015)	(0.100)	(0.061)	(0.071)
Connectedstart	-0.0401**	-0.0182	-0.4254***	0.0811	0.1078
	(0.016)	(0.011)	(0.119)	(0.090)	(0.093)
Connectedstart *Old	-0.0197	-0.0473***	0.3829***	-0.0696	-0.1543
	(0.021)	(0.016)	(0.142)	(0.104)	(0.105)
Old	0.0576***	-0.0333***	-0.1706	-0.0197	0.0911
	(0.013)	(0.009)	(0.121)	(0.083)	(0.092)
Observations	11,730	11,730	1,126	4,262	3,034
R-squared	0.287	0.121	0.896	0.935	0.712
Mean	0.245	0.098	6.402	4.581	-0.010
City and year FE	X	X	X	X	X
Controls	X	X	X	X	X
Init.Cond.Depvar			X	X	X
SE Cluster	City	City	City	City	City

- More prominent pursuit of infrastructure-over-innovation among young leaders
- Unlikely to be driven by promotion

Direct Effect v.s. Indirect Effect

- Heterogenous response likely to be driven by difference in
 - Dependency on government's direct funding support
 - Time frame of innovation activities

Implications for from "made-in-China" to "innovated-in-China" Local Description of the control of the control

